recentpopularlog in


« earlier   
[1803.11175] Universal Sentence Encoder
We present models for encoding sentences into embedding vectors that specifically target transfer learning to other NLP tasks. The models are efficient and result in accurate performance on diverse transfer tasks. Two variants of the encoding models allow for trade-offs between accuracy and compute resources. For both variants, we investigate and report the relationship between model complexity, resource consumption, the availability of transfer task training data, and task performance. Comparisons are made with baselines that use word level transfer learning via pretrained word embeddings as well as baselines do not use any transfer learning. We find that transfer learning using sentence embeddings tends to outperform word level transfer. With transfer learning via sentence embeddings, we observe surprisingly good performance with minimal amounts of supervised training data for a transfer task. We obtain encouraging results on Word Embedding Association Tests (WEAT) targeted at detecting model bias. Our pre-trained sentence encoding models are made freely available for download and on TF Hub.
nlp  machine_learning 
17 minutes ago by amy
[1804.07754] Learning Semantic Textual Similarity from Conversations
We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational input-response pairs. The resulting sentence embeddings perform well on the semantic textual similarity (STS) benchmark and SemEval 2017's Community Question Answering (CQA) question similarity subtask. Performance is further improved by introducing multitask training combining the conversational input-response prediction task and a natural language inference task. Extensive experiments show the proposed model achieves the best performance among all neural models on the STS benchmark and is competitive with the state-of-the-art feature engineered and mixed systems in both tasks.
nlp  machine_learning 
18 minutes ago by amy
Google AI Blog: Advances in Semantic Textual Similarity
The recent rapid progress of neural network-based natural language understanding research, especially on learning semantic text representations, can enable truly novel products such as Smart Compose and Talk to Books. It can also help improve performance on a variety of natural language tasks which have limited amounts of training data, such as building strong text classifiers from as few as 100 labeled examples.

Below, we discuss two papers reporting recent progress on semantic representation research at Google, as well as two new models available for download on TensorFlow Hub that we hope developers will use to build new and exciting applications.
TensorFlow  machine_learning  google 
18 minutes ago by amy
Machine Learning Crash Course
A self-study guide for aspiring machine learning practitioners
machine_learning  tutorials 
17 hours ago by brunsnik
Algorithmic Fairness
Concerns that algorithms may discriminate against certain groups have led to numerous efforts to 'blind' the algorithm to race. We argue that this intuitive perspective is misleading and may do harm. Our primary result is exceedingly simple, yet often overlooked. A preference for fairness should not change the choice of estimator. Equity preferences can change how the estimated prediction function is used (e.g., different threshold for different groups) but the function itself should not change. We show in an empirical example for college admissions that the inclusion of variables such as race can increase both equity and efficiency.
econometrics  algorithms  ethics  machine_learning  sendhil.mullainathan 
2 days ago by rvenkat

Copy this bookmark:

to read