recentpopularlog in

jerryking : hype   1

Big Data should inspire humility, not hype
Mar. 04 2013| The Globe and Mail |Konrad Yakabuski.

" mathematical models have their limits.

The Great Recession should have made that clear. The forecasters and risk managers who relied on supposedly foolproof algorithms all failed to see the crash coming. The historical economic data they fed into their computers did not go back far enough. Their models were not built to account for rare events. Yet, policy makers bought their rosy forecasts hook, line and sinker.

You might think that Nate Silver, the whiz-kid statistician who correctly predicted the winner of the 2012 U.S. presidential election in all 50 states, would be Big Data’s biggest apologist. Instead, he warns against putting our faith in the predictive power of machines.

“Our predictions may be more prone to failure in the era of Big Data,” The New York Times blogger writes in his recent book, The Signal and the Noise. “As there is an exponential increase in the amount of available information, there is likewise an exponential increase in the number of hypotheses to investigate … [But] most of the data is just noise, as most of the universe is filled with empty space.”

Perhaps the biggest risk we run in the era of Big Data is confusing correlation with causation – or rather, being duped by so-called “data scientists” who tell us one thing leads to another. The old admonition about “lies, damn lies and statistics” is more appropriate than ever."
massive_data_sets  data_driven  McKinsey  skepticism  contrarians  data_scientists  Konrad_Yakabuski  modelling  Nate_Silver  humility  risks  books  correlations  causality  algorithms  infoliteracy  noise  signals  hype 
march 2013 by jerryking

Copy this bookmark:

to read