recentpopularlog in

jerryking : miniaturization   7

The Chip That Changed the World
Aug. 26, 2018 | WSJ | By Andy Kessler.

Integrated circuits are the greatest invention since fire—or maybe indoor plumbing. The world would be unrecognizable without them. They have bent the curve of history, influencing the economy, government and general human flourishing. The productivity unleashed from silicon computing power disrupted or destroyed everything in its path: retail, music, finance, advertising, travel, manufacturing, health care, energy. It’s hard to find anything Kilby’s invention hasn’t changed.

Now what? Despite the routine media funeral for Moore’s Law, it’s not dead yet. But it is old.......Brace yourself. When Moore’s Law finally gives up the ghost, productivity and economic growth will roll over too—unless. The world needs another Great Bend, another Kilbyesque warp in the cosmos, to drive the economy.

One hope is quantum computing, which isn’t limited by binary 1s and 0s, but instead uses qubits (quantum bits) based on Schrödinger’s quantum mechanics. .......Maybe architecture will keep the growth alive. Twenty years ago, Google created giant parallel computer systems to solve the search problem. The same may be seen for artificial intelligence, which is in its infancy. ......Energy is being disrupted but not fast enough. Where is that battery breakthrough? .........Biocomputing is another fascinating area. We already have gene editing in the form of Crispr. New food supplies and drugs may change how humans live and not die and bend the curve. But.... anything involving biology is painfully slow. ....Computing takes nanoseconds; biology takes days, weeks, even years. Breakthroughs may still come, but experiments take so long that progress lags behind. Still, I’d watch this space closely.
Andy_Kessler  artificial_intelligence  breakthroughs  broad-based_scientific_enquiry  Crispr  game_changers  gene_editing  Gordon_Moore  hard_to_find  history  inventions  miniaturization  molecular_biology  Moore's_Law  Nobel_Prizes  quantum_computing  semiconductors 
august 2018 by jerryking
Moore’s Law Shows Its Age - WSJ
By DON CLARK
April 17, 2015

Moore’s Law is hitting some painful limits.

The design and testing of a chip with the latest technology now costs $132 million, up 9% from the previous top-of-the-line chip, estimates International Business Strategies Inc., a consulting firm in Los Gatos, Calif. A decade ago, designing such an advanced chip cost just $16 million. Meanwhile, some companies for the first time are unable to reduce the cost of each tiny transistor....The changes are triggered partly by the many new processing steps needed to turn silicon wafers into the latest computer chips. Circuitry for the latest chips has a width of 14 nanometers, or billionths of a meter, which enables manufacturers to squeeze hundreds of millions more transistors on a chip than they could in the past. But designing products that use so many more components takes lots of time and money.
Moore's_Law  Silicon_Valley  history  Intel  diminishing_returns  semiconductors  miniaturization  physics 
april 2015 by jerryking
Address by Mike Lazaridis, PI Board Chair, to the Public Policy Forum - Perimeter Institute for Theoretical Physics
April 2, 2009 | Address by Mike Lazaridis, PI Board Chair, to the Public Policy Forum

First Principles: The Crazy Business of Doing Serious Science (Paperback)
by Howard Burton (Author) . It's an account of how the Perimeter Institute was built from scratch.

This year’s testimonial dinner was held on April 2, 2009, and honoured several Canadian leaders, including Mike Lazaridis, Founder and Board Chair of Perimeter Institute, who conveyed the importance of long-term thinking by those involved with shaping policy relating to science and technology. The following text, building on those remarks as reported by the national media, shares the messages provided to the PPF.
+++++++++++++++

So imagine this story. A granting council has been tasked with driving the economy, really building commerce and commercializing technology and doing important things for the country. And so, of course, what are they thinking? They’re thinking we need more horses, we need better ways to clean up the streets, and we need to figure out ways to build better stagecoaches and carriages. Now this physicist comes into the room and he sits down. And they ask him, "Dr. Einstein, why are you here?" He says, "Oh, I’d like to have an office and a stipend." "For what?" they want to know. So he explains, "Well, I need a desk and blackboard and maybe a shelf for my books and my papers. And I need a small stipend, so I can go to a few scientific conferences around the world and have a few postdoctoral researchers." They ask, "Why?" And he says: "Well, I have these ideas about light and it’s very complicated, but light can …" And the council members start wondering, "What’s that got to do with horses?"

So, that gentleman actually had to go and get a day job. He went to work at a patent office, where he came up with, a few years later, the four most important papers of all time. Ideas that transformed everything we knew and put mankind in a new direction. He came up with one of the basic ideas leading to quantum technology, when he predicted the quantum properties of light, explaining an observation called the photo-electric effect. He came up with special relativity, a new understanding of space and time. He also discovered that mass and energy are the same thing at a fundamental level. By thinking and calculating the way he did, he came up with E=mc2, the most famous equation of all time. These discoveries, over time, led to nuclear energy, semiconductors, computers, lasers, medical imaging, DVDs and much more. The powerful ideas happened from pure thought and research by someone who basically would have had to give up a comfortable salary at the patent office to take a research or teaching position at a university.

Now let’s fast-forward to today. We have all these issues. We’re running out of energy any way you slice it. And the energy sources that we have today are changing our climate and the environment catastrophically and irreparably. At the same time, we have this enormous need for value creation because our financial system basically ran onto a coral reef. We’re taking on debt to try to get ourselves off the reef, and there’s all this need for value creation and innovation. It’s kind of staring us in the face.

We only have to flashback to that gentleman thinking about light to realize that we need to fund our scientists and our researchers and our students. We not only need to fund them imaginatively, we need to have faith that what they are doing is going to be important in 20, 30, 40 or 50 years from now, and that we haven’t got a chance of understanding its relevance today.

And so we need to be very careful with policy, not to try to put everything in short-term context – not to try to figure out how something is only relevant today – because, if we do, we will make a mistake. We will go the wrong way. We will be investing in horses, carriages, and cleaning manure in the streets instead of fostering the research that can give rise to an idea or super technology that’s going to change the world.

Right now, there is some pandemonium in physics because we are running up against some paradoxes and some data that don’t make any sense. For example, Moore’s Law, which describes the miniaturization of computer chips, will reach its limit in 10 years. Everything we built our telecommunications industry and information age on is going to hit this limit, if we don’t find a new base. We need a new discovery. It’s going to happen, and we need to put major investments in these esoteric studies like quantum computing, quantum information science, quantum gravity, string theory and other areas, because I can guarantee you that one of the discoveries that will emerge is going to solve one of those scientific paradoxes and make sense of that weird data. And when that happens, 20 or 30 years from now, you won’t recognize things.
Albert_Einstein  Blackberry  books  broad-based_scientific_enquiry  first_principle  fundamental_discoveries  Mike_Lazaridis  miniaturization  Moore's_Law  paradoxes  Perimeter_Institute  physicists  public_policy  quantum_computing  RIM  semiconductors 
april 2009 by jerryking

Copy this bookmark:





to read