recentpopularlog in

Copy this bookmark:





to read

bookmark detail

Moravec's paradox - Wikipedia
Moravec's paradox is the discovery by artificial intelligence and robotics researchers that, contrary to traditional assumptions, high-level reasoning requires very little computation, but low-level sensorimotor skills require enormous computational resources. The principle was articulated by Hans Moravec, Rodney Brooks, Marvin Minsky and others in the 1980s. As Moravec writes, "it is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old when it comes to perception and mobility".[1]

Similarly, Minsky emphasized that the most difficult human skills to reverse engineer are those that are unconscious. "In general, we're least aware of what our minds do best", he wrote, and added "we're more aware of simple processes that don't work well than of complex ones that work flawlessly".[2]

...

One possible explanation of the paradox, offered by Moravec, is based on evolution. All human skills are implemented biologically, using machinery designed by the process of natural selection. In the course of their evolution, natural selection has tended to preserve design improvements and optimizations. The older a skill is, the more time natural selection has had to improve the design. Abstract thought developed only very recently, and consequently, we should not expect its implementation to be particularly efficient.

As Moravec writes:

Encoded in the large, highly evolved sensory and motor portions of the human brain is a billion years of experience about the nature of the world and how to survive in it. The deliberate process we call reasoning is, I believe, the thinnest veneer of human thought, effective only because it is supported by this much older and much more powerful, though usually unconscious, sensorimotor knowledge. We are all prodigious olympians in perceptual and motor areas, so good that we make the difficult look easy. Abstract thought, though, is a new trick, perhaps less than 100 thousand years old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it.[3]

A compact way to express this argument would be:

- We should expect the difficulty of reverse-engineering any human skill to be roughly proportional to the amount of time that skill has been evolving in animals.
- The oldest human skills are largely unconscious and so appear to us to be effortless.
- Therefore, we should expect skills that appear effortless to be difficult to reverse-engineer, but skills that require effort may not necessarily be difficult to engineer at all.
concept  wiki  reference  paradox  ai  intelligence  reason  instinct  neuro  psychology  cog-psych  hardness  logic  deep-learning  time  evopsych  evolution  sapiens  the-self  EEA  embodied  embodied-cognition  abstraction  universalism-particularism  gnosis-logos  robotics 
june 2018 by nhaliday
view in context