recentpopularlog in

nhaliday : gradient-descent   39

A Recipe for Training Neural Networks
acmtariat  org:bleg  nibble  machine-learning  deep-learning  howto  tutorial  guide  nitty-gritty  gotchas  init  list  checklists  expert-experience  abstraction  composition-decomposition  gradient-descent  data-science  error  debugging  benchmarks  programming  engineering  best-practices  dataviz  checking  plots  generalization  regularization  unsupervised  optimization  ensembles  random  methodology  multi  twitter  social  discussion  techtariat  links  org:med  pdf  visualization  python  recommendations  advice  devtools 
april 2019 by nhaliday
Sequence Modeling with CTC
A visual guide to Connectionist Temporal Classification, an algorithm used to train deep neural networks in speech recognition, handwriting recognition and other sequence problems.
acmtariat  techtariat  org:bleg  nibble  better-explained  machine-learning  deep-learning  visual-understanding  visualization  analysis  let-me-see  research  sequential  audio  classification  model-class  exposition  language  acm  approximation  comparison  markov  iteration-recursion  concept  atoms  distribution  orders  DP  heuristic  optimization  trees  greedy  matching  gradient-descent  org:popup 
december 2017 by nhaliday
New Theory Cracks Open the Black Box of Deep Learning | Quanta Magazine
A new idea called the “information bottleneck” is helping to explain the puzzling success of today’s artificial-intelligence algorithms — and might also explain how human brains learn.

sounds like he's just talking about autoencoders?
news  org:mag  org:sci  popsci  announcement  research  deep-learning  machine-learning  acm  information-theory  bits  neuro  model-class  big-surf  frontier  nibble  hmm  signal-noise  deepgoog  expert  ideas  wild-ideas  summary  talks  video  israel  roots  physics  interdisciplinary  ai  intelligence  shannon  giants  arrows  preimage  lifts-projections  composition-decomposition  characterization  markov  gradient-descent  papers  liner-notes  experiment  hi-order-bits  generalization  expert-experience  explanans  org:inst  speedometer 
september 2017 by nhaliday
Superintelligence Risk Project Update II
For example, I asked him what he thought of the idea that to we could get AGI with current techniques, primarily deep neural nets and reinforcement learning, without learning anything new about how intelligence works or how to implement it ("Prosaic AGI" [1]). He didn't think this was possible, and believes there are deep conceptual issues we still need to get a handle on. He's also less impressed with deep learning than he was before he started working in it: in his experience it's a much more brittle technology than he had been expecting. Specifically, when trying to replicate results, he's often found that they depend on a bunch of parameters being in just the right range, and without that the systems don't perform nearly as well.

The bottom line, to him, was that since we are still many breakthroughs away from getting to AGI, we can't productively work on reducing superintelligence risk now.

He told me that he worries that the AI risk community is not solving real problems: they're making deductions and inferences that are self-consistent but not being tested or verified in the world. Since we can't tell if that's progress, it probably isn't. I asked if he was referring to MIRI's work here, and he said their work was an example of the kind of approach he's skeptical about, though he wasn't trying to single them out. [2]
Earlier this week I had a conversation with an AI researcher [1] at one of the main industry labs as part of my project of assessing superintelligence risk. Here's what I got from them:

They see progress in ML as almost entirely constrained by hardware and data, to the point that if today's hardware and data had existed in the mid 1950s researchers would have gotten to approximately our current state within ten to twenty years. They gave the example of backprop: we saw how to train multi-layer neural nets decades before we had the computing power to actually train these nets to do useful things.

Similarly, people talk about AlphaGo as a big jump, where Go went from being "ten years away" to "done" within a couple years, but they said it wasn't like that. If Go work had stayed in academia, with academia-level budgets and resources, it probably would have taken nearly that long. What changed was a company seeing promising results, realizing what could be done, and putting way more engineers and hardware on the project than anyone had previously done. AlphaGo couldn't have happened earlier because the hardware wasn't there yet, and was only able to be brought forward by massive application of resources.
Summary: I'm not convinced that AI risk should be highly prioritized, but I'm also not convinced that it shouldn't. Highly qualified researchers in a position to have a good sense the field have massively different views on core questions like how capable ML systems are now, how capable they will be soon, and how we can influence their development. I do think these questions are possible to get a better handle on, but I think this would require much deeper ML knowledge than I have.
ratty  core-rats  ai  risk  ai-control  prediction  expert  machine-learning  deep-learning  speedometer  links  research  research-program  frontier  multi  interview  deepgoog  games  hardware  performance  roots  impetus  chart  big-picture  state-of-art  reinforcement  futurism  🤖  🖥  expert-experience  singularity  miri-cfar  empirical  evidence-based  speculation  volo-avolo  clever-rats  acmtariat  robust  ideas  crux  atoms  detail-architecture  software  gradient-descent 
july 2017 by nhaliday
How to Escape Saddle Points Efficiently – Off the convex path
A core, emerging problem in nonconvex optimization involves the escape of saddle points. While recent research has shown that gradient descent (GD) generically escapes saddle points asymptotically (see Rong Ge’s and Ben Recht’s blog posts), the critical open problem is one of efficiency — is GD able to move past saddle points quickly, or can it be slowed down significantly? How does the rate of escape scale with the ambient dimensionality? In this post, we describe our recent work with Rong Ge, Praneeth Netrapalli and Sham Kakade, that provides the first provable positive answer to the efficiency question, showing that, rather surprisingly, GD augmented with suitable perturbations escapes saddle points efficiently; indeed, in terms of rate and dimension dependence it is almost as if the saddle points aren’t there!
acmtariat  org:bleg  nibble  liner-notes  machine-learning  acm  optimization  gradient-descent  local-global  off-convex  time-complexity  random  perturbation  michael-jordan  iterative-methods  research  learning-theory  math.DS  iteration-recursion  org:popup 
july 2017 by nhaliday

Copy this bookmark:

to read