recentpopularlog in

nhaliday : libraries   215

« earlier  
javascript - ReactJS - Does render get called any time "setState" is called? - Stack Overflow
By default - yes.

There is a method boolean shouldComponentUpdate(object nextProps, object nextState), each component has this method and it's responsible to determine "should component update (run render function)?" every time you change state or pass new props from parent component.

You can write your own implementation of shouldComponentUpdate method for your component, but default implementation always returns true - meaning always re-run render function.

...

Next part of your question:

If so, why? I thought the idea was that React only rendered as little as needed - when state changed.

There are two steps of what we may call "render":

Virtual DOM render: when render method is called it returns a new virtual dom structure of the component. As I mentioned before, this render method is called always when you call setState(), because shouldComponentUpdate always returns true by default. So, by default, there is no optimization here in React.

Native DOM render: React changes real DOM nodes in your browser only if they were changed in the Virtual DOM and as little as needed - this is that great React's feature which optimizes real DOM mutation and makes React fast.
q-n-a  stackex  programming  intricacy  nitty-gritty  abstraction  state  frontend  web  javascript  libraries  facebook  frameworks  explanation  summary  models 
october 2019 by nhaliday
javascript - What is the purpose of double curly braces in React's JSX syntax? - Stack Overflow
The exterior set of curly braces are letting JSX know you want a JS expression. The interior set of curly braces represent a JavaScript object, meaning you’re passing in an object to the style attribute.
q-n-a  stackex  programming  explanation  trivia  gotchas  syntax  javascript  frontend  DSL  intricacy  facebook  libraries  frameworks 
october 2019 by nhaliday
Ask HN: Learning modern web design and CSS | Hacker News
Ask HN: Best way to learn HTML and CSS for web design?: https://news.ycombinator.com/item?id=11048409
Ask HN: How to learn design as a hacker?: https://news.ycombinator.com/item?id=8182084

Ask HN: How to learn front-end beyond the basics?: https://news.ycombinator.com/item?id=19468043
Ask HN: What is the best JavaScript stack for a beginner to learn?: https://news.ycombinator.com/item?id=8780385
Free resources for learning full-stack web development: https://news.ycombinator.com/item?id=13890114

Ask HN: What is essential reading for learning modern web development?: https://news.ycombinator.com/item?id=14888251
Ask HN: A Syllabus for Modern Web Development?: https://news.ycombinator.com/item?id=2184645

Ask HN: Modern day web development for someone who last did it 15 years ago: https://news.ycombinator.com/item?id=20656411
hn  discussion  design  form-design  frontend  web  tutorial  links  recommendations  init  pareto  efficiency  minimum-viable  move-fast-(and-break-things)  advice  roadmap  multi  hacker  games  puzzles  learning  guide  dynamic  retention  DSL  working-stiff  q-n-a  javascript  frameworks  ecosystem  libraries  client-server  hci  ux  books  chart 
october 2019 by nhaliday
CppCon 2015: Chandler Carruth "Tuning C++: Benchmarks, and CPUs, and Compilers! Oh My!" - YouTube
- very basics of benchmarking
- Q: why does preemptive reserve speed up push_back by 10x?
- favorite tool is Linux perf
- callgraph profiling
- important option: -fomit-frame-pointer
- perf has nice interface ('a' = "annotate") for reading assembly (good display of branches/jumps)
- A: optimized to no-op
- how to turn off optimizer
- profilers aren't infallible. a lot of the time samples are misattributed to neighboring ops
- fast mod example
- branch prediction hints (#define UNLIKELY(x), __builtin_expected, etc)
video  presentation  c(pp)  pls  programming  unix  heavyweights  cracker-prog  benchmarks  engineering  best-practices  working-stiff  systems  expert-experience  google  llvm  common-case  stories  libraries  measurement  linux  performance  traces  graphs  static-dynamic  ui  assembly  compilers  methodology  techtariat 
october 2019 by nhaliday
Parallel Computing: Theory and Practice
by Umut Acar who also co-authored a different book on parallel algorithms w/ Guy Blelloch from a more high-level and functional perspective
unit  books  cmu  cs  programming  tcs  algorithms  concurrency  c(pp)  divide-and-conquer  libraries  complexity  time-complexity  data-structures  orders  graphs  graph-theory  trees  models  functional  metal-to-virtual  systems 
september 2019 by nhaliday
Karol Kuczmarski's Blog – A Haskell retrospective
Even in this hypothetical scenario, I posit that the value proposition of Haskell would still be a tough sell.

There is this old quote from Bjarne Stroustrup (creator of C++) where he says that programming languages divide into those everyone complains about, and those that no one uses.
The first group consists of old, established technologies that managed to accrue significant complexity debt through years and decades of evolution. All the while, they’ve been adapting to the constantly shifting perspectives on what are the best industry practices. Traces of those adaptations can still be found today, sticking out like a leftover appendix or residual tail bone — or like the built-in support for XML in Java.

Languages that “no one uses”, on the other hand, haven’t yet passed the industry threshold of sufficient maturity and stability. Their ecosystems are still cutting edge, and their future is uncertain, but they sometimes champion some really compelling paradigm shifts. As long as you can bear with things that are rough around the edges, you can take advantage of their novel ideas.

Unfortunately for Haskell, it manages to combine the worst parts of both of these worlds.

On one hand, it is a surprisingly old language, clocking more than two decades of fruitful research around many innovative concepts. Yet on the other hand, it bears the signs of a fresh new technology, with relatively few production-grade libraries, scarce coverage of some domains (e.g. GUI programming), and not too many stories of commercial successes.

There are many ways to do it
String theory
Errors and how to handle them
Implicit is better than explicit
Leaky modules
Namespaces are apparently a bad idea
Wild records
Purity beats practicality
techtariat  reflection  functional  haskell  programming  pls  realness  facebook  pragmatic  cost-benefit  legacy  libraries  types  intricacy  engineering  tradeoffs  frontier  homo-hetero  duplication  strings  composition-decomposition  nitty-gritty  error  error-handling  coupling-cohesion  critique  ecosystem  c(pp)  aphorism 
august 2019 by nhaliday
mypy - Optional Static Typing for Python
developed by Dropbox in Python and past contributors include Greg Price, Reid Barton

https://pyre-check.org
developed by Facebook in OCaml, seems less complete atm
python  types  programming  pls  devtools  compilers  formal-methods  dropbox  multi  facebook  ocaml-sml  libraries  the-prices  oly  static-dynamic 
july 2019 by nhaliday
Call graph - Wikipedia
I've found both static and dynamic versions useful (former mostly when I don't want to go thru pain of compiling something)

best options AFAICT:

C/C++ and maybe Go: https://github.com/gperftools/gperftools
https://gperftools.github.io/gperftools/cpuprofile.html

static: https://github.com/Vermeille/clang-callgraph
https://stackoverflow.com/questions/5373714/how-to-generate-a-calling-graph-for-c-code
I had to go through some extra pain to get this to work:
- if you use Homebrew LLVM (that's slightly incompatible w/ macOS c++filt, make sure to pass -n flag)
- similarly macOS sed needs two extra backslashes for each escape of the angle brackets

another option: doxygen

Go: https://stackoverflow.com/questions/31362332/creating-call-graph-in-golang
both static and dynamic in one tool

Java: https://github.com/gousiosg/java-callgraph
both static and dynamic in one tool

Python:
https://github.com/gak/pycallgraph
more up-to-date forks: https://github.com/daneads/pycallgraph2 and https://github.com/YannLuo/pycallgraph
old docs: https://pycallgraph.readthedocs.io/en/master/
I've had some trouble getting nice output from this (even just getting the right set of nodes displayed, not even taking into account layout and formatting).
- Argument parsing syntax is idiosyncratic. Just read `pycallgraph --help`.
- Options -i and -e take glob patterns (see pycallgraph2/{tracer,globbing_filter}.py), which are applied the function names qualified w/ module paths.
- Functions defined in the script you are running receive no module path. There is no easy way to filter for them using the -i and -e options.
- The --debug option gives you the graphviz for your own use instead of just writing the final image produced.

static: https://github.com/davidfraser/pyan
more up-to-date fork: https://github.com/itsayellow/pyan/
one way to good results: `pyan -dea --format yed $MODULE_FILES > output.graphml`, then open up in yEd and use hierarchical layout

various: https://github.com/jrfonseca/gprof2dot

I believe all the dynamic tools listed here support weighting nodes and edges by CPU time/samples (inclusive and exclusive of descendants) and discrete calls. In the case of the gperftools and the Java option you probably have to parse the output to get the latter, tho.

IIRC Dtrace has probes for function entry/exit. So that's an option as well.

old pin: https://github.com/nst/objc_dep
Graph the import dependancies in an Objective-C project
concept  wiki  reference  tools  devtools  graphs  trees  programming  code-dive  let-me-see  big-picture  libraries  software  recommendations  list  top-n  links  c(pp)  golang  python  javascript  jvm  stackex  q-n-a  howto  yak-shaving  visualization  dataviz  performance  structure  oss  osx  unix  linux  static-dynamic  repo  cocoa 
july 2019 by nhaliday
Errors in Math Functions (The GNU C Library)
https://stackoverflow.com/questions/22259537/guaranteed-precision-of-sqrt-function-in-c-c
For C99, there are no specific requirements. But most implementations try to support Annex F: IEC 60559 floating-point arithmetic as good as possible. It says:

An implementation that defines __STDC_IEC_559__ shall conform to the specifications in this annex.

And:

The sqrt functions in <math.h> provide the IEC 60559 square root operation.

IEC 60559 (equivalent to IEEE 754) says about basic operations like sqrt:

Except for binary <-> decimal conversion, each of the operations shall be performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then coerced this intermediate result to fit in the destination's format.

The final step consists of rounding according to several rounding modes but the result must always be the closest representable value in the target precision.

[ed.: The list of other such correctly rounded functions is included in the IEEE-754 standard (which I've put w/ the C1x and C++2x standard drafts) under section 9.2, and it mainly consists of stuff that can be expressed in terms of exponentials (exp, log, trig functions, powers) along w/ sqrt/hypot functions.

Fun fact: this question was asked by Yeputons who has a codeforces profile.]
https://stackoverflow.com/questions/20945815/math-precision-requirements-of-c-and-c-standard
oss  libraries  systems  c(pp)  numerics  documentation  objektbuch  list  linux  unix  multi  q-n-a  stackex  programming  nitty-gritty  sci-comp  accuracy  types  approximation  IEEE  protocol-metadata  gnu 
july 2019 by nhaliday
history - Why are UNIX/POSIX system call namings so illegible? - Unix & Linux Stack Exchange
It's due to the technical constraints of the time. The POSIX standard was created in the 1980s and referred to UNIX, which was born in the 1970. Several C compilers at that time were limited to identifiers that were 6 or 8 characters long, so that settled the standard for the length of variable and function names.

http://neverworkintheory.org/2017/11/26/abbreviated-full-names.html
We carried out a family of controlled experiments to investigate whether the use of abbreviated identifier names, with respect to full-word identifier names, affects fault fixing in C and Java source code. This family consists of an original (or baseline) controlled experiment and three replications. We involved 100 participants with different backgrounds and experiences in total. Overall results suggested that there is no difference in terms of effort, effectiveness, and efficiency to fix faults, when source code contains either only abbreviated or only full-word identifier names. We also conducted a qualitative study to understand the values, beliefs, and assumptions that inform and shape fault fixing when identifier names are either abbreviated or full-word. We involved in this qualitative study six professional developers with 1--3 years of work experience. A number of insights emerged from this qualitative study and can be considered a useful complement to the quantitative results from our family of experiments. One of the most interesting insights is that developers, when working on source code with abbreviated identifier names, adopt a more methodical approach to identify and fix faults by extending their focus point and only in a few cases do they expand abbreviated identifiers.
q-n-a  stackex  trivia  programming  os  systems  legacy  legibility  ux  libraries  unix  linux  hacker  cracker-prog  multi  evidence-based  empirical  expert-experience  engineering  study  best-practices  comparison  quality  debugging  efficiency  time  code-organizing  grokkability  grokkability-clarity 
july 2019 by nhaliday
Integrated vs type based shrinking - Hypothesis
The big difference is whether shrinking is integrated into generation.

In Haskell’s QuickCheck, shrinking is defined based on types: Any value of a given type shrinks the same way, regardless of how it is generated. In Hypothesis, test.check, etc. instead shrinking is part of the generation, and the generator controls how the values it produces shrinks (this works differently in Hypothesis and test.check, and probably differently again in EQC, but the user visible result is largely the same)

This is not a trivial distinction. Integrating shrinking into generation has two large benefits:
- Shrinking composes nicely, and you can shrink anything you can generate regardless of whether there is a defined shrinker for the type produced.
- You can _guarantee that shrinking satisfies the same invariants as generation_.
The first is mostly important from a convenience point of view: Although there are some things it let you do that you can’t do in the type based approach, they’re mostly of secondary importance. It largely just saves you from the effort of having to write your own shrinkers.

But the second is really important, because the lack of it makes your test failures potentially extremely confusing.

...

[example: even_numbers = integers().map(lambda x: x * 2)]

...

In this example the problem was relatively obvious and so easy to work around, but as your invariants get more implicit and subtle it becomes really problematic: In Hypothesis it’s easy and convenient to generate quite complex data, and trying to recreate the invariants that are automatically satisfied with that in your tests and/or your custom shrinkers would quickly become a nightmare.

I don’t think it’s an accident that the main systems to get this right are in dynamic languages. It’s certainly not essential - the original proposal that lead to the implementation for test.check was for Haskell, and Jack is an alternative property based system for Haskell that does this - but you feel the pain much more quickly in dynamic languages because the typical workaround for this problem in Haskell is to define a newtype, which lets you turn off the default shrinking for your types and possibly define your own.

But that’s a workaround for a problem that shouldn’t be there in the first place, and using it will still result in your having to encode the invariants into your your shrinkers, which is more work and more brittle than just having it work automatically.

So although (as far as I know) none of the currently popular property based testing systems for statically typed languages implement this behaviour correctly, they absolutely can and they absolutely should. It will improve users’ lives significantly.

https://hypothesis.works/articles/compositional-shrinking/
In my last article about shrinking, I discussed the problems with basing shrinking on the type of the values to be shrunk.

In writing it though I forgot that there was a halfway house which is also somewhat bad (but significantly less so) that you see in a couple of implementations.

This is when the shrinking is not type based, but still follows the classic shrinking API that takes a value and returns a lazy list of shrinks of that value. Examples of libraries that do this are theft and QuickTheories.

This works reasonably well and solves the major problems with type directed shrinking, but it’s still somewhat fragile and importantly does not compose nearly as well as the approaches that Hypothesis or test.check take.

Ideally, as well as not being based on the types of the values being generated, shrinking should not be based on the actual values generated at all.

This may seem counter-intuitive, but it actually works pretty well.

...

We took a strategy and composed it with a function mapping over the values that that strategy produced to get a new strategy.

Suppose the Hypothesis strategy implementation looked something like the following:
...
i.e. we can generate a value and we can shrink a value that we’ve previously generated. By default we don’t know how to generate values (subclasses have to implement that) and we can’t shrink anything, which subclasses are able to fix if they want or leave as is if they’re fine with that.

(This is in fact how a very early implementation of it looked)

This is essentially the approach taken by theft or QuickTheories, and the problem with it is that under this implementation the ‘map’ function we used above is impossible to define in a way that preserves shrinking: In order to shrink a generated value, you need some way to invert the function you’re composing with (which is in general impossible even if your language somehow exposed the facilities to do it, which it almost certainly doesn’t) so you could take the generated value, map it back to the value that produced it, shrink that and then compose with the mapping function.

...

The key idea for fixing this is as follows: In order to shrink outputs it almost always suffices to shrink inputs. Although in theory you can get functions where simpler input leads to more complicated output, in practice this seems to be rare enough that it’s OK to just shrug and accept more complicated test output in those cases.

Given that, the _way to shrink the output of a mapped strategy is to just shrink the value generated from the first strategy and feed it to the mapping function_.

Which means that you need an API that can support that sort of shrinking.

https://hypothesis.works/articles/types-and-properties/
This happens a lot: Frequently there are properties that only hold in some restricted domain, and so you want more specific tests for that domain to complement your other tests for the larger range of data.

When this happens you need tools to generate something more specific, and those requirements don’t map naturally to types.

[ed.: Some examples of how this idea can be useful:
Have a type but want to test different distributions on it for different purposes. Eg, comparing worst-case and average-case guarantees for benchmarking time/memory complexity. Comparing a slow and fast implementation on small input sizes, then running some sanity checks for the fast implementation on large input sizes beyond what the slow implementation can handle.]

...

In Haskell, traditionally we would fix this with a newtype declaration which wraps the type. We could find a newtype NonEmptyList and a newtype FiniteFloat and then say that we actually wanted a NonEmptyList[FiniteFloat] there.

...

But why should we bother? Especially if we’re only using these in one test, we’re not actually interested in these types at all, and it just adds a whole bunch of syntactic noise when you could just pass the data generators directly. Defining new types for the data you want to generate is purely a workaround for a limitation of the API.

If you were working in a dependently typed language where you could already naturally express this in the type system it might be OK (I don’t have any direct experience of working in type systems that strong), but I’m sceptical of being able to make it work well - you’re unlikely to be able to automatically derive data generators in the general case, because the needs of data generation “go in the opposite direction” from types (a type is effectively a predicate which consumes a value, where a data generator is a function that produces a value, so in order to produce a generator for a type automatically you need to basically invert the predicate). I suspect most approaches here will leave you with a bunch of sharp edges, but I would be interested to see experiments in this direction.

https://www.reddit.com/r/haskell/comments/646k3d/ann_hedgehog_property_testing/dg1485c/
techtariat  rhetoric  rant  programming  libraries  pls  types  functional  haskell  python  random  checking  design  critique  multi  composition-decomposition  api  reddit  social  commentary  system-design  arrows  lifts-projections  DSL  static-dynamic 
july 2019 by nhaliday
Mutation testing - Wikipedia
Mutation testing involves modifying a program in small ways.[1] Each mutated version is called a mutant and tests detect and reject mutants by causing the behavior of the original version to differ from the mutant. This is called killing the mutant. Test suites are measured by the percentage of mutants that they kill. New tests can be designed to kill additional mutants.
wiki  reference  concept  mutation  selection  analogy  programming  checking  formal-methods  debugging  random  list  libraries  links  functional  haskell  javascript  jvm  c(pp)  python  dotnet  oop  perturbation  static-dynamic 
july 2019 by nhaliday
Which of Haskell and OCaml is more practical? For example, in which aspect will each play a key role? - Quora
- Tikhon Jelvis,

Haskell.

This is a question I'm particularly well-placed to answer because I've spent quite a bit of time with both Haskell and OCaml, seeing both in the real world (including working at Jane Street for a bit). I've also seen the languages in academic settings and know many people at startups using both languages. This gives me a good perspective on both languages, with a fairly similar amount of experience in the two (admittedly biased towards Haskell).

And so, based on my own experience rather than the languages' reputations, I can confidently say it's Haskell.

Parallelism and Concurrency

...

Libraries

...

Typeclasses vs Modules

...

In some sense, OCaml modules are better behaved and founded on a sounder theory than Haskell typeclasses, which have some serious drawbacks. However, the fact that typeclasses can be reliably inferred whereas modules have to be explicitly used all the time more than makes up for this. Moreover, extensions to the typeclass system enable much of the power provided by OCaml modules.

...

Of course, OCaml has some advantages of its own as well. It has a performance profile that's much easier to predict. The module system is awesome and often missed in Haskell. Polymorphic variants can be very useful for neatly representing certain situations, and don't have an obvious Haskell analog.

While both languages have a reasonable C FFI, OCaml's seems a bit simpler. It's hard for me to say this with any certainty because I've only used the OCaml FFI myself, but it was quite easy to use—a hard bar for Haskell's to clear. One really nice use of modules in OCaml is to pass around values directly from C as abstract types, which can help avoid extra marshalling/unmarshalling; that seemed very nice in OCaml.

However, overall, I still think Haskell is the more practical choice. Apart from the reasoning above, I simply have my own observations: my Haskell code tends to be clearer, simpler and shorter than my OCaml code. I'm also more productive in Haskell. Part of this is certainly a matter of having more Haskell experience, but the delta is limited especially as I'm working at my third OCaml company. (Of course, the first two were just internships.)

Both Haskell and OCaml are uniquivocally superb options—miles ahead of any other languages I know. While I do prefer Haskell, I'd choose either one in a pinch.

--
I've looked at F# a bit, but it feels like it makes too many tradeoffs to be on .NET. You lose the module system, which is probably OCaml's best feature, in return for an unfortunate, nominally typed OOP layer.

I'm also not invested in .NET at all: if anything, I'd prefer to avoid it in favor of simplicity. I exclusively use Linux and, from the outside, Mono doesn't look as good as it could be. I'm also far more likely to interoperate with a C library than a .NET library.

If I had some additional reason to use .NET, I'd definitely go for F#, but right now I don't.

https://www.reddit.com/r/haskell/comments/3huexy/what_are_haskellers_critiques_of_f_and_ocaml/
https://www.reddit.com/r/haskell/comments/3huexy/what_are_haskellers_critiques_of_f_and_ocaml/cub5mmb/
Thinking about it now, it boils down to a single word: expressiveness. When I'm writing OCaml, I feel more constrained than when I'm writing Haskell. And that's important: unlike so many others, what first attracted me to Haskell was expressiveness, not safety. It's easier for me to write code that looks how I want it to look in Haskell. The upper bound on code quality is higher.

...

Perhaps it all boils down to OCaml and its community feeling more "worse is better" than Haskell, something I highly disfavor.

...

Laziness or, more strictly, non-strictness is big. A controversial start, perhaps, but I stand by it. Unlike some, I do not see non-strictness as a design mistake but as a leap in abstraction. Perhaps a leap before its time, but a leap nonetheless. Haskell lets me program without constantly keeping the code's order in my head. Sure, it's not perfect and sometimes performance issues jar the illusion, but they are the exception not the norm. Coming from imperative languages where order is omnipresent (I can't even imagine not thinking about execution order as I write an imperative program!) it's incredibly liberating, even accounting for the weird issues and jinks I'd never see in a strict language.

This is what I imagine life felt like with the first garbage collectors: they may have been slow and awkward, the abstraction might have leaked here and there, but, for all that, it was an incredible advance. You didn't have to constantly think about memory allocation any more. It took a lot of effort to get where we are now and garbage collectors still aren't perfect and don't fit everywhere, but it's hard to imagine the world without them. Non-strictness feels like it has the same potential, without anywhere near the work garbage collection saw put into it.

...

The other big thing that stands out are typeclasses. OCaml might catch up on this front with implicit modules or it might not (Scala implicits are, by many reports, awkward at best—ask Edward Kmett about it, not me) but, as it stands, not having them is a major shortcoming. Not having inference is a bigger deal than it seems: it makes all sorts of idioms we take for granted in Haskell awkward in OCaml which means that people simply don't use them. Haskell's typeclasses, for all their shortcomings (some of which I find rather annoying), are incredibly expressive.

In Haskell, it's trivial to create your own numeric type and operators work as expected. In OCaml, while you can write code that's polymorphic over numeric types, people simply don't. Why not? Because you'd have to explicitly convert your literals and because you'd have to explicitly open a module with your operators—good luck using multiple numeric types in a single block of code! This means that everyone uses the default types: (63/31-bit) ints and doubles. If that doesn't scream "worse is better", I don't know what does.

...

There's more. Haskell's effect management, brought up elsewhere in this thread, is a big boon. It makes changing things more comfortable and makes informal reasoning much easier. Haskell is the only language where I consistently leave code I visit better than I found it. Even if I hadn't worked on the project in years. My Haskell code has better longevity than my OCaml code, much less other languages.

http://blog.ezyang.com/2011/02/ocaml-gotchas/
One observation about purity and randomness: I think one of the things people frequently find annoying in Haskell is the fact that randomness involves mutation of state, and thus be wrapped in a monad. This makes building probabilistic data structures a little clunkier, since you can no longer expose pure interfaces. OCaml is not pure, and as such you can query the random number generator whenever you want.

However, I think Haskell may get the last laugh in certain circumstances. In particular, if you are using a random number generator in order to generate random test cases for your code, you need to be able to reproduce a particular set of random tests. Usually, this is done by providing a seed which you can then feed back to the testing script, for deterministic behavior. But because OCaml's random number generator manipulates global state, it's very easy to accidentally break determinism by asking for a random number for something unrelated. You can work around it by manually bracketing the global state, but explicitly handling the randomness state means providing determinism is much more natural.
q-n-a  qra  programming  pls  engineering  nitty-gritty  pragmatic  functional  haskell  ocaml-sml  dotnet  types  arrows  cost-benefit  tradeoffs  concurrency  libraries  performance  expert-experience  composition-decomposition  comparison  critique  multi  reddit  social  discussion  techtariat  reflection  review  random  data-structures  numerics  rand-approx  sublinear  syntax  volo-avolo  causation  scala  jvm  ecosystem  metal-to-virtual 
june 2019 by nhaliday
C++ Core Guidelines
This document is a set of guidelines for using C++ well. The aim of this document is to help people to use modern C++ effectively. By “modern C++” we mean effective use of the ISO C++ standard (currently C++17, but almost all of our recommendations also apply to C++14 and C++11). In other words, what would you like your code to look like in 5 years’ time, given that you can start now? In 10 years’ time?

https://isocpp.github.io/CppCoreGuidelines/
“Within C++ is a smaller, simpler, safer language struggling to get out.” – Bjarne Stroustrup

...

The guidelines are focused on relatively higher-level issues, such as interfaces, resource management, memory management, and concurrency. Such rules affect application architecture and library design. Following the rules will lead to code that is statically type safe, has no resource leaks, and catches many more programming logic errors than is common in code today. And it will run fast - you can afford to do things right.

We are less concerned with low-level issues, such as naming conventions and indentation style. However, no topic that can help a programmer is out of bounds.

Our initial set of rules emphasize safety (of various forms) and simplicity. They may very well be too strict. We expect to have to introduce more exceptions to better accommodate real-world needs. We also need more rules.

...

The rules are designed to be supported by an analysis tool. Violations of rules will be flagged with references (or links) to the relevant rule. We do not expect you to memorize all the rules before trying to write code.

contrary:
https://aras-p.info/blog/2018/12/28/Modern-C-Lamentations/
This will be a long wall of text, and kinda random! My main points are:
1. C++ compile times are important,
2. Non-optimized build performance is important,
3. Cognitive load is important. I don’t expand much on this here, but if a programming language or a library makes me feel stupid, then I’m less likely to use it or like it. C++ does that a lot :)
programming  engineering  pls  best-practices  systems  c(pp)  guide  metabuch  objektbuch  reference  cheatsheet  elegance  frontier  libraries  intricacy  advanced  advice  recommendations  big-picture  novelty  lens  philosophy  state  error  types  concurrency  memory-management  performance  abstraction  plt  compilers  expert-experience  multi  checking  devtools  flux-stasis  safety  system-design  techtariat  time  measure  dotnet  comparison  examples  build-packaging  thinking  worse-is-better/the-right-thing  cost-benefit  tradeoffs  essay  commentary  oop  correctness  computer-memory  error-handling  resources-effects  latency-throughput 
june 2019 by nhaliday
Regex cheatsheet
Many programs use regular expression to find & replace text. However, they tend to come with their own different flavor.

You can probably expect most modern software and programming languages to be using some variation of the Perl flavor, "PCRE"; however command-line tools (grep, less, ...) will often use the POSIX flavor (sometimes with an extended variant, e.g. egrep or sed -r). ViM also comes with its own syntax (a superset of what Vi accepts).

This cheatsheet lists the respective syntax of each flavor, and the software that uses it.

accidental complexity galore
techtariat  reference  cheatsheet  documentation  howto  yak-shaving  editors  strings  syntax  examples  crosstab  objektbuch  python  comparison  gotchas  tip-of-tongue  automata-languages  pls  trivia  properties  libraries  nitty-gritty  intricacy  degrees-of-freedom  DSL  programming 
june 2019 by nhaliday
Interview with Donald Knuth | Interview with Donald Knuth | InformIT
Andrew Binstock and Donald Knuth converse on the success of open source, the problem with multicore architecture, the disappointing lack of interest in literate programming, the menace of reusable code, and that urban legend about winning a programming contest with a single compilation.

Reusable vs. re-editable code: https://hal.archives-ouvertes.fr/hal-01966146/document
- Konrad Hinsen

https://www.johndcook.com/blog/2008/05/03/reusable-code-vs-re-editable-code/
I think whether code should be editable or in “an untouchable black box” depends on the number of developers involved, as well as their talent and motivation. Knuth is a highly motivated genius working in isolation. Most software is developed by large teams of programmers with varying degrees of motivation and talent. I think the further you move away from Knuth along these three axes the more important black boxes become.
nibble  interview  giants  expert-experience  programming  cs  software  contrarianism  carmack  oss  prediction  trends  linux  concurrency  desktop  comparison  checking  debugging  stories  engineering  hmm  idk  algorithms  books  debate  flux-stasis  duplication  parsimony  best-practices  writing  documentation  latex  intricacy  structure  hardware  caching  workflow  editors  composition-decomposition  coupling-cohesion  exposition  technical-writing  thinking  cracker-prog  code-organizing  grokkability  multi  techtariat  commentary  pdf  reflection  essay  examples  python  data-science  libraries  grokkability-clarity  project-management 
june 2019 by nhaliday
algorithm, algorithmic, algorithmicx, algorithm2e, algpseudocode = confused - TeX - LaTeX Stack Exchange
algorithm2e is only one currently maintained, but answerer prefers style of algorithmicx, and after perusing the docs, so do I
q-n-a  stackex  libraries  list  recommendations  comparison  publishing  cs  programming  algorithms  tools 
june 2019 by nhaliday
Should I go for TensorFlow or PyTorch?
Honestly, most experts that I know love Pytorch and detest TensorFlow. Karpathy and Justin from Stanford for example. You can see Karpthy's thoughts and I've asked Justin personally and the answer was sharp: PYTORCH!!! TF has lots of PR but its API and graph model are horrible and will waste lots of your research time.

--

...

Updated Mar 12
Update after 2019 TF summit:

TL/DR: previously I was in the pytorch camp but with TF 2.0 it’s clear that Google is really going to try to have parity or try to be better than Pytorch in all aspects where people voiced concerns (ease of use/debugging/dynamic graphs). They seem to be allocating more resources on development than Facebook so the longer term currently looks promising for Google. Prior to TF 2.0 I thought that Pytorch team had more momentum. One area where FB/Pytorch is still stronger is Google is a bit more closed and doesn’t seem to release reproducible cutting edge models such as AlphaGo whereas FAIR released OpenGo for instance. Generally you will end up running into models that are only implemented in one framework of the other so chances are you might end up learning both.
q-n-a  qra  comparison  software  recommendations  cost-benefit  tradeoffs  python  libraries  machine-learning  deep-learning  data-science  sci-comp  tools  google  facebook  tech  competition  best-practices  trends  debugging  expert-experience  ecosystem  theory-practice  pragmatic  wire-guided  static-dynamic  state  academia  frameworks  open-closed 
may 2019 by nhaliday
One week of bugs
If I had to guess, I'd say I probably work around hundreds of bugs in an average week, and thousands in a bad week. It's not unusual for me to run into a hundred new bugs in a single week. But I often get skepticism when I mention that I run into multiple new (to me) bugs per day, and that this is inevitable if we don't change how we write tests. Well, here's a log of one week of bugs, limited to bugs that were new to me that week. After a brief description of the bugs, I'll talk about what we can do to improve the situation. The obvious answer to spend more effort on testing, but everyone already knows we should do that and no one does it. That doesn't mean it's hopeless, though.

...

Here's where I'm supposed to write an appeal to take testing more seriously and put real effort into it. But we all know that's not going to work. It would take 90k LOC of tests to get Julia to be as well tested as a poorly tested prototype (falsely assuming linear complexity in size). That's two person-years of work, not even including time to debug and fix bugs (which probably brings it closer to four of five years). Who's going to do that? No one. Writing tests is like writing documentation. Everyone already knows you should do it. Telling people they should do it adds zero information1.

Given that people aren't going to put any effort into testing, what's the best way to do it?

Property-based testing. Generative testing. Random testing. Concolic Testing (which was done long before the term was coined). Static analysis. Fuzzing. Statistical bug finding. There are lots of options. Some of them are actually the same thing because the terminology we use is inconsistent and buggy. I'm going to arbitrarily pick one to talk about, but they're all worth looking into.

...

There are a lot of great resources out there, but if you're just getting started, I found this description of types of fuzzers to be one of those most helpful (and simplest) things I've read.

John Regehr has a udacity course on software testing. I haven't worked through it yet (Pablo Torres just pointed to it), but given the quality of Dr. Regehr's writing, I expect the course to be good.

For more on my perspective on testing, there's this.

Everything's broken and nobody's upset: https://www.hanselman.com/blog/EverythingsBrokenAndNobodysUpset.aspx
https://news.ycombinator.com/item?id=4531549

https://hypothesis.works/articles/the-purpose-of-hypothesis/
From the perspective of a user, the purpose of Hypothesis is to make it easier for you to write better tests.

From my perspective as the primary author, that is of course also a purpose of Hypothesis. I write a lot of code, it needs testing, and the idea of trying to do that without Hypothesis has become nearly unthinkable.

But, on a large scale, the true purpose of Hypothesis is to drag the world kicking and screaming into a new and terrifying age of high quality software.

Software is everywhere. We have built a civilization on it, and it’s only getting more prevalent as more services move online and embedded and “internet of things” devices become cheaper and more common.

Software is also terrible. It’s buggy, it’s insecure, and it’s rarely well thought out.

This combination is clearly a recipe for disaster.

The state of software testing is even worse. It’s uncontroversial at this point that you should be testing your code, but it’s a rare codebase whose authors could honestly claim that they feel its testing is sufficient.

Much of the problem here is that it’s too hard to write good tests. Tests take up a vast quantity of development time, but they mostly just laboriously encode exactly the same assumptions and fallacies that the authors had when they wrote the code, so they miss exactly the same bugs that you missed when they wrote the code.

Preventing the Collapse of Civilization [video]: https://news.ycombinator.com/item?id=19945452
- Jonathan Blow

NB: DevGAMM is a game industry conference

- loss of technological knowledge (Antikythera mechanism, aqueducts, etc.)
- hardware driving most gains, not software
- software's actually less robust, often poorly designed and overengineered these days
- *list of bugs he's encountered recently*:
https://youtu.be/pW-SOdj4Kkk?t=1387
- knowledge of trivia becomes [ed.: missing the word "valued" here, I think?]more than general, deep knowledge
- does at least acknowledge value of DRY, reusing code, abstraction saving dev time
techtariat  dan-luu  tech  software  error  list  debugging  linux  github  robust  checking  oss  troll  lol  aphorism  webapp  email  google  facebook  games  julia  pls  compilers  communication  mooc  browser  rust  programming  engineering  random  jargon  formal-methods  expert-experience  prof  c(pp)  course  correctness  hn  commentary  video  presentation  carmack  pragmatic  contrarianism  pessimism  sv  unix  rhetoric  critique  worrydream  hardware  performance  trends  multiplicative  roots  impact  comparison  history  iron-age  the-classics  mediterranean  conquest-empire  gibbon  technology  the-world-is-just-atoms  flux-stasis  increase-decrease  graphics  hmm  idk  systems  os  abstraction  intricacy  worse-is-better/the-right-thing  build-packaging  microsoft  osx  apple  reflection  assembly  things  knowledge  detail-architecture  thick-thin  trivia  info-dynamics  caching  frameworks  generalization  systematic-ad-hoc  universalism-particularism  analytical-holistic  structure  tainter  libraries  tradeoffs  prepping  threat-modeling  network-structure  writing  risk  local-glob 
may 2019 by nhaliday
python - Does pandas iterrows have performance issues? - Stack Overflow
Generally, iterrows should only be used in very very specific cases. This is the general order of precedence for performance of various operations:

1) vectorization
2) using a custom cython routine
3) apply
a) reductions that can be performed in cython
b) iteration in python space
4) itertuples
5) iterrows
6) updating an empty frame (e.g. using loc one-row-at-a-time)
q-n-a  stackex  programming  python  libraries  gotchas  data-science  sci-comp  performance  checklists  objektbuch  best-practices  DSL  frameworks 
may 2019 by nhaliday
c++ - Why is the code in most STL implementations so convoluted? - Stack Overflow
A similar questions have been previously posed:

Is there a readable implementation of the STL

Why STL implementation is so unreadable? How C++ could have been improved here?

--

Neil Butterworth, now listed as "anon", provided a useful link in his answer to the SO question "Is there a readable implementation of the STL?". Quoting his answer there:

There is a book The C++ Standard Template Library, co-authored by the original STL designers Stepanov & Lee (together with P.J. Plauger and David Musser), which describes a possible implementation, complete with code - see http://www.amazon.co.uk/C-Standard-Template-Library/dp/0134376331.

See also the other answers in that thread.

Anyway, most of the STL code (by STL I here mean the STL-like subset of the C++ standard library) is template code, and as such must be header-only, and since it's used in almost every program it pays to have that code as short as possible.

Thus, the natural trade-off point between conciseness and readability is much farther over on the conciseness end of the scale than with "normal" code.

--

About the variables names, library implementors must use "crazy" naming conventions, such as names starting with an underscore followed by an uppercase letter, because such names are reserved for them. They cannot use "normal" names, because those may have been redefined by a user macro.

Section 17.6.3.3.2 "Global names" §1 states:

Certain sets of names and function signatures are always reserved to the implementation:

Each name that contains a double underscore or begins with an underscore followed by an uppercase letter is reserved to the implementation for any use.

Each name that begins with an underscore is reserved to the implementation for use as a name in the global namespace.

(Note that these rules forbid header guards like __MY_FILE_H which I have seen quite often.)

--

Implementations vary. libc++ for example, is much easier on the eyes. There's still a bit of underscore noise though. As others have noted, the leading underscores are unfortunately required. Here's the same function in libc++:
q-n-a  stackex  programming  engineering  best-practices  c(pp)  systems  pls  nitty-gritty  libraries  code-organizing  grokkability  grokkability-clarity 
may 2019 by nhaliday
its-not-software - steveyegge2
You don't work in the software industry.

...

So what's the software industry, and how do we differ from it?

Well, the software industry is what you learn about in school, and it's what you probably did at your previous company. The software industry produces software that runs on customers' machines — that is, software intended to run on a machine over which you have no control.

So it includes pretty much everything that Microsoft does: Windows and every application you download for it, including your browser.

It also includes everything that runs in the browser, including Flash applications, Java applets, and plug-ins like Adobe's Acrobat Reader. Their deployment model is a little different from the "classic" deployment models, but it's still software that you package up and release to some unknown client box.

...

Servware

Our industry is so different from the software industry, and it's so important to draw a clear distinction, that it needs a new name. I'll call it Servware for now, lacking anything better. Hardware, firmware, software, servware. It fits well enough.

Servware is stuff that lives on your own servers. I call it "stuff" advisedly, since it's more than just software; it includes configuration, monitoring systems, data, documentation, and everything else you've got there, all acting in concert to produce some observable user experience on the other side of a network connection.
techtariat  sv  tech  rhetoric  essay  software  saas  devops  engineering  programming  contrarianism  list  top-n  best-practices  applicability-prereqs  desktop  flux-stasis  homo-hetero  trends  games  thinking  checklists  dbs  models  communication  tutorial  wiki  integration-extension  frameworks  api  whole-partial-many  metrics  retrofit  c(pp)  pls  code-dive  planning  working-stiff  composition-decomposition  libraries  conceptual-vocab  amazon  system-design  cracker-prog  tech-infrastructure  blowhards  client-server  project-management 
may 2019 by nhaliday
Cilk Hub
looks like this is run by Billy Moses and Leiserson (the L in CLRS)
mit  tools  programming  pls  plt  systems  c(pp)  libraries  compilers  performance  homepage  concurrency 
may 2019 by nhaliday
AFL + QuickCheck = ?
Adventures in fuzzing. Also differences between testing culture in software and hardware.
techtariat  dan-luu  programming  engineering  checking  random  haskell  path-dependence  span-cover  heuristic  libraries  links  tools  devtools  software  hardware  culture  formal-methods  local-global  golang  correctness  methodology 
may 2019 by nhaliday
Use and Interpretation of LD Score Regression
LD Score regression distinguishes confounding from polygenicity in genome-wide association studies: https://sci-hub.bz/10.1038/ng.3211
- Po-Ru Loh, Nick Patterson, et al.

https://www.biorxiv.org/content/biorxiv/early/2014/02/21/002931.full.pdf

Both polygenicity (i.e. many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield inflated distributions of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from bias and true signal from polygenicity. We have developed an approach that quantifies the contributions of each by examining the relationship between test statistics and linkage disequilibrium (LD). We term this approach LD Score regression. LD Score regression provides an upper bound on the contribution of confounding bias to the observed inflation in test statistics and can be used to estimate a more powerful correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of test statistic inflation in many GWAS of large sample size.

Supplementary Note: https://images.nature.com/original/nature-assets/ng/journal/v47/n3/extref/ng.3211-S1.pdf

An atlas of genetic correlations across human diseases
and traits: https://sci-hub.bz/10.1038/ng.3406

https://www.biorxiv.org/content/early/2015/01/27/014498.full.pdf

Supplementary Note: https://images.nature.com/original/nature-assets/ng/journal/v47/n11/extref/ng.3406-S1.pdf

https://github.com/bulik/ldsc
ldsc is a command line tool for estimating heritability and genetic correlation from GWAS summary statistics. ldsc also computes LD Scores.
nibble  pdf  slides  talks  bio  biodet  genetics  genomics  GWAS  genetic-correlation  correlation  methodology  bioinformatics  concept  levers  🌞  tutorial  explanation  pop-structure  gene-drift  ideas  multi  study  org:nat  article  repo  software  tools  libraries  stats  hypothesis-testing  biases  confounding  gotchas  QTL  simulation  survey  preprint  population-genetics 
november 2017 by nhaliday
Ancient Admixture in Human History
- Patterson, Reich et al., 2012
Population mixture is an important process in biology. We present a suite of methods for learning about population mixtures, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture. We also describe the development of a new single nucleotide polymorphism (SNP) array consisting of 629,433 sites with clearly documented ascertainment that was specifically designed for population genetic analyses and that we genotyped in 934 individuals from 53 diverse populations. To illustrate the methods, we give a number of examples that provide new insights about the history of human admixture. The most striking finding is a clear signal of admixture into northern Europe, with one ancestral population related to present-day Basques and Sardinians and the other related to present-day populations of northeast Asia and the Americas. This likely reflects a history of admixture between Neolithic migrants and the indigenous Mesolithic population of Europe, consistent with recent analyses of ancient bones from Sweden and the sequencing of the genome of the Tyrolean “Iceman.”
nibble  pdf  study  article  methodology  bio  sapiens  genetics  genomics  population-genetics  migration  gene-flow  software  trees  concept  history  antiquity  europe  roots  gavisti  🌞  bioinformatics  metrics  hypothesis-testing  levers  ideas  libraries  tools  pop-structure 
november 2017 by nhaliday
« earlier      
per page:    204080120160

Copy this bookmark:





to read