recentpopularlog in

nhaliday : synthesis   173

« earlier  
What's the expected level of paper for top conferences in Computer Science - Academia Stack Exchange
Top. The top level.

My experience on program committees for STOC, FOCS, ITCS, SODA, SOCG, etc., is that there are FAR more submissions of publishable quality than can be accepted into the conference. By "publishable quality" I mean a well-written presentation of a novel, interesting, and non-trivial result within the scope of the conference.

...

There are several questions that come up over and over in the FOCS/STOC review cycle:

- How surprising / novel / elegant / interesting is the result?
- How surprising / novel / elegant / interesting / general are the techniques?
- How technically difficult is the result? Ironically, FOCS and STOC committees have a reputation for ignoring the distinction between trivial (easy to derive from scratch) and nondeterministically trivial (easy to understand after the fact).
- What is the expected impact of this result? Is this paper going to change the way people do theoretical computer science over the next five years?
- Is the result of general interest to the theoretical computer science community? Or is it only of interest to a narrow subcommunity? In particular, if the topic is outside the STOC/FOCS mainstream—say, for example, computational topology—does the paper do a good job of explaining and motivating the results to a typical STOC/FOCS audience?
nibble  q-n-a  overflow  academia  tcs  cs  meta:research  publishing  scholar  lens  properties  cost-benefit  analysis  impetus  increase-decrease  soft-question  motivation  proofs  search  complexity  analogy  problem-solving  elegance  synthesis  hi-order-bits  novelty  discovery 
june 2019 by nhaliday
What are the Laws of Biology?
The core finding of systems biology is that only a very small subset of possible network motifs is actually used and that these motifs recur in all kinds of different systems, from transcriptional to biochemical to neural networks. This is because only those arrangements of interactions effectively perform some useful operation, which underlies some necessary function at a cellular or organismal level. There are different arrangements for input summation, input comparison, integration over time, high-pass or low-pass filtering, negative auto-regulation, coincidence detection, periodic oscillation, bistability, rapid onset response, rapid offset response, turning a graded signal into a sharp pulse or boundary, and so on, and so on.

These are all familiar concepts and designs in engineering and computing, with well-known properties. In living organisms there is one other general property that the designs must satisfy: robustness. They have to work with noisy components, at a scale that’s highly susceptible to thermal noise and environmental perturbations. Of the subset of designs that perform some operation, only a much smaller subset will do it robustly enough to be useful in a living organism. That is, they can still perform their particular functions in the face of noisy or fluctuating inputs or variation in the number of components constituting the elements of the network itself.
scitariat  reflection  proposal  ideas  thinking  conceptual-vocab  lens  bio  complex-systems  selection  evolution  flux-stasis  network-structure  structure  composition-decomposition  IEEE  robust  signal-noise  perturbation  interdisciplinary  graphs  circuits  🌞  big-picture  hi-order-bits  nibble  synthesis 
november 2017 by nhaliday
What is the connection between special and general relativity? - Physics Stack Exchange
Special relativity is the "special case" of general relativity where spacetime is flat. The speed of light is essential to both.
nibble  q-n-a  overflow  physics  relativity  explanation  synthesis  hi-order-bits  ground-up  gravity  summary  aphorism  differential  geometry 
november 2017 by nhaliday
What is the difference between general and special relativity? - Quora
General Relativity is, quite simply, needed to explain gravity.

Special Relativity is the special case of GR, when the metric is flat — which means no gravity.

You need General Relativity when the metric gets all curvy, and when things start to experience gravitation.
nibble  q-n-a  qra  explanation  physics  relativity  synthesis  hi-order-bits  ground-up  gravity  summary  aphorism  differential  geometry 
november 2017 by nhaliday
If Quantum Computers are not Possible Why are Classical Computers Possible? | Combinatorics and more
As most of my readers know, I regard quantum computing as unrealistic. You can read more about it in my Notices AMS paper and its extended version (see also this post) and in the discussion of Puzzle 4 from my recent puzzles paper (see also this post). The amazing progress and huge investment in quantum computing (that I presented and update  routinely in this post) will put my analysis to test in the next few years.
tcstariat  mathtariat  org:bleg  nibble  tcs  cs  computation  quantum  volo-avolo  no-go  contrarianism  frontier  links  quantum-info  analogy  comparison  synthesis  hi-order-bits  speedometer  questions  signal-noise 
november 2017 by nhaliday
Benedict Evans on Twitter: ""University can save you from the autodidact tendency to overrate himself. Democracy depends on people who know they don’t know everything.""
“The autodidact’s risk is that they think they know all of medieval history but have never heard of Charlemagne” - Umberto Eco

Facts are the least part of education. The structure and priorities they fit into matters far more, and learning how to learn far more again
techtariat  sv  twitter  social  discussion  rhetoric  info-foraging  learning  education  higher-ed  academia  expert  lens  aphorism  quotes  hi-order-bits  big-picture  synthesis  expert-experience 
october 2017 by nhaliday
Is the U.S. Aggregate Production Function Cobb-Douglas? New Estimates of the Elasticity of Substitution∗
world-wide: http://www.socsci.uci.edu/~duffy/papers/jeg2.pdf
https://www.weforum.org/agenda/2016/01/is-the-us-labour-share-as-constant-as-we-thought
https://www.economicdynamics.org/meetpapers/2015/paper_844.pdf
We find that IPP capital entirely explains the observed decline of the US labor share, which otherwise is secularly constant over the past 65 years for structures and equipment capital. The labor share decline simply reflects the fact that the US economy is undergoing a transition toward a larger IPP sector.
https://ideas.repec.org/p/red/sed015/844.html
http://www.robertdkirkby.com/blog/2015/summary-of-piketty-i/
https://www.brookings.edu/bpea-articles/deciphering-the-fall-and-rise-in-the-net-capital-share/
The Fall of the Labor Share and the Rise of Superstar Firms: http://www.nber.org/papers/w23396
The Decline of the U.S. Labor Share: https://www.brookings.edu/wp-content/uploads/2016/07/2013b_elsby_labor_share.pdf
Table 2 has industry disaggregation
Estimating the U.S. labor share: https://www.bls.gov/opub/mlr/2017/article/estimating-the-us-labor-share.htm

Why Workers Are Losing to Capitalists: https://www.bloomberg.com/view/articles/2017-09-20/why-workers-are-losing-to-capitalists
Automation and offshoring may be conspiring to reduce labor's share of income.
pdf  study  economics  growth-econ  econometrics  usa  data  empirical  analysis  labor  capital  econ-productivity  manifolds  magnitude  multi  world  🎩  piketty  econotariat  compensation  inequality  winner-take-all  org:ngo  org:davos  flexibility  distribution  stylized-facts  regularizer  hmm  history  mostly-modern  property-rights  arrows  invariance  industrial-org  trends  wonkish  roots  synthesis  market-power  efficiency  variance-components  business  database  org:gov  article  model-class  models  automation  nationalism-globalism  trade  news  org:mag  org:biz  org:bv  noahpinion  explanation  summary  methodology  density  polarization  map-territory  input-output 
july 2017 by nhaliday
New studies show the cost of student laptop use in lecture classes - Daniel Willingham
In-lecture media use and academic performance: Does subject area matter: http://www.sciencedirect.com/science/article/pii/S0747563217304983
The study found that while a significant negative correlation exists between in-lecture media use and academic performance for students in the Arts and Social Sciences, the same pattern is not observable for students in the faculties of Engineering, Economic and Management Sciences, and Medical and Health Sciences.

hmm

Why you should take notes by hand — not on a laptop: https://www.vox.com/2014/6/4/5776804/note-taking-by-hand-versus-laptop
Presumably, they're using the computers to take notes, so they better remember the course material. But new research shows that if learning is their goal, using a laptop during class is a terrible idea.

It's not just because internet-connected laptops are so distracting. It's because even if students aren't distracted, the act of taking notes on a computer actually seems to interfere with their ability to remember information.

Pam Mueller and Daniel Oppenheimer, the psychologists who conducted the new research, believe it's because students on laptops usually just mindlessly type everything a professor says. Those taking notes by hand, though, have to actively listen and decide what's important — because they generally can't write fast enough to get everything down — which ultimately helps them learn.

The Pen Is Mightier Than the Keyboard: Advantages of Longhand Over Laptop Note Taking: https://linguistics.ucla.edu/people/hayes/Teaching/papers/MuellerAndOppenheimer2014OnTakingNotesByHand.pdf
scitariat  education  higher-ed  learning  data  study  summary  intervention  internet  attention  field-study  effect-size  studying  regularizer  aversion  the-monster  multi  cost-benefit  notetaking  evidence-based  news  org:lite  org:data  hi-order-bits  synthesis  spreading  contiguity-proximity 
april 2017 by nhaliday
A VERY BRIEF REVIEW OF MEASURE THEORY
A brief philosophical discussion:
Measure theory, as much as any branch of mathematics, is an area where it is important to be acquainted with the basic notions and statements, but not desperately important to be acquainted with the detailed proofs, which are often rather unilluminating. One should always have in a mind a place where one could go and look if one ever did need to understand a proof: for me, that place is Rudin’s Real and Complex Analysis (Rudin’s “red book”).
gowers  pdf  math  math.CA  math.FA  philosophy  measure  exposition  synthesis  big-picture  hi-order-bits  ergodic  ground-up  summary  roadmap  mathtariat  proofs  nibble  unit  integral  zooming  p:whenever 
february 2017 by nhaliday
What is the relationship between information theory and Coding theory? - Quora
basically:
- finite vs. asymptotic
- combinatorial vs. probabilistic (lotsa overlap their)
- worst-case (Hamming) vs. distributional (Shannon)

Information and coding theory most often appear together in the subject of error correction over noisy channels. Historically, they were born at almost exactly the same time - both Richard Hamming and Claude Shannon were working at Bell Labs when this happened. Information theory tends to heavily use tools from probability theory (together with an "asymptotic" way of thinking about the world), while traditional "algebraic" coding theory tends to employ mathematics that are much more finite sequence length/combinatorial in nature, including linear algebra over Galois Fields. The emergence in the late 90s and first decade of 2000 of codes over graphs blurred this distinction though, as code classes such as low density parity check codes employ both asymptotic analysis and random code selection techniques which have counterparts in information theory.

They do not subsume each other. Information theory touches on many other aspects that coding theory does not, and vice-versa. Information theory also touches on compression (lossy & lossless), statistics (e.g. large deviations), modeling (e.g. Minimum Description Length). Coding theory pays a lot of attention to sphere packing and coverings for finite length sequences - information theory addresses these problems (channel & lossy source coding) only in an asymptotic/approximate sense.
q-n-a  qra  math  acm  tcs  information-theory  coding-theory  big-picture  comparison  confusion  explanation  linear-algebra  polynomials  limits  finiteness  math.CO  hi-order-bits  synthesis  probability  bits  hamming  shannon  intricacy  nibble  s:null  signal-noise 
february 2017 by nhaliday
electromagnetism - Is Biot-Savart law obtained empirically or can it be derived? - Physics Stack Exchange
Addendum: In mathematics and science it is important to keep in mind the distinction between the historical and the logical development of a subject. Knowing the history of a subject can be useful to get a sense of the personalities involved and sometimes to develop an intuition about the subject. The logical presentation of the subject is the way practitioners think about it. It encapsulates the main ideas in the most complete and simple fashion. From this standpoint, electromagnetism is the study of Maxwell's equations and the Lorentz force law. Everything else is secondary, including the Biot-Savart law.
q-n-a  overflow  physics  electromag  synthesis  proofs  nibble 
february 2017 by nhaliday
general topology - What should be the intuition when working with compactness? - Mathematics Stack Exchange
http://math.stackexchange.com/questions/485822/why-is-compactness-so-important

The situation with compactness is sort of like the above. It turns out that finiteness, which you think of as one concept (in the same way that you think of "Foo" as one concept above), is really two concepts: discreteness and compactness. You've never seen these concepts separated before, though. When people say that compactness is like finiteness, they mean that compactness captures part of what it means to be finite in the same way that shortness captures part of what it means to be Foo.

--

As many have said, compactness is sort of a topological generalization of finiteness. And this is true in a deep sense, because topology deals with open sets, and this means that we often "care about how something behaves on an open set", and for compact spaces this means that there are only finitely many possible behaviors.

--

Compactness does for continuous functions what finiteness does for functions in general.

If a set A is finite then every function f:A→R has a max and a min, and every function f:A→R^n is bounded. If A is compact, the every continuous function from A to R has a max and a min and every continuous function from A to R^n is bounded.

If A is finite then every sequence of members of A has a subsequence that is eventually constant, and "eventually constant" is the only kind of convergence you can talk about without talking about a topology on the set. If A is compact, then every sequence of members of A has a convergent subsequence.
q-n-a  overflow  math  topology  math.GN  concept  finiteness  atoms  intuition  oly  mathtariat  multi  discrete  gowers  motivation  synthesis  hi-order-bits  soft-question  limits  things  nibble  definition  convergence  abstraction  span-cover 
january 2017 by nhaliday
Shtetl-Optimized » Blog Archive » Logicians on safari
So what are they then? Maybe it’s helpful to think of them as “quantitative epistemology”: discoveries about the capacities of finite beings like ourselves to learn mathematical truths. On this view, the theoretical computer scientist is basically a mathematical logician on a safari to the physical world: someone who tries to understand the universe by asking what sorts of mathematical questions can and can’t be answered within it. Not whether the universe is a computer, but what kind of computer it is! Naturally, this approach to understanding the world tends to appeal most to people for whom math (and especially discrete math) is reasonably clear, whereas physics is extremely mysterious.

the sequel: http://www.scottaaronson.com/blog/?p=153
tcstariat  aaronson  tcs  computation  complexity  aphorism  examples  list  reflection  philosophy  multi  summary  synthesis  hi-order-bits  interdisciplinary  lens  big-picture  survey  nibble  org:bleg  applications  big-surf  s:*  p:whenever  ideas  elegance 
january 2017 by nhaliday
ca.analysis and odes - Why do functions in complex analysis behave so well? (as opposed to functions in real analysis) - MathOverflow
Well, real-valued analytic functions are just as rigid as their complex-valued counterparts. The true question is why complex smooth (or complex differentiable) functions are automatically complex analytic, whilst real smooth (or real differentiable) functions need not be real analytic.
q-n-a  overflow  math  math.CA  math.CV  synthesis  curiosity  gowers  oly  mathtariat  tcstariat  comparison  rigidity  smoothness  singularity  regularity  nibble 
january 2017 by nhaliday
ho.history overview - Proofs that require fundamentally new ways of thinking - MathOverflow
my favorite:
Although this has already been said elsewhere on MathOverflow, I think it's worth repeating that Gromov is someone who has arguably introduced more radical thoughts into mathematics than anyone else. Examples involving groups with polynomial growth and holomorphic curves have already been cited in other answers to this question. I have two other obvious ones but there are many more.

I don't remember where I first learned about convergence of Riemannian manifolds, but I had to laugh because there's no way I would have ever conceived of a notion. To be fair, all of the groundwork for this was laid out in Cheeger's thesis, but it was Gromov who reformulated everything as a convergence theorem and recognized its power.

Another time Gromov made me laugh was when I was reading what little I could understand of his book Partial Differential Relations. This book is probably full of radical ideas that I don't understand. The one I did was his approach to solving the linearized isometric embedding equation. His radical, absurd, but elementary idea was that if the system is sufficiently underdetermined, then the linear partial differential operator could be inverted by another linear partial differential operator. Both the statement and proof are for me the funniest in mathematics. Most of us view solving PDE's as something that requires hard work, involving analysis and estimates, and Gromov manages to do it using only elementary linear algebra. This then allows him to establish the existence of isometric embedding of Riemannian manifolds in a wide variety of settings.
q-n-a  overflow  soft-question  big-list  math  meta:math  history  insight  synthesis  gowers  mathtariat  hi-order-bits  frontier  proofs  magnitude  giants  differential  geometry  limits  flexibility  nibble  degrees-of-freedom  big-picture  novelty  zooming  big-surf  wild-ideas  metameta  courage  convergence  ideas  innovation  the-trenches  discovery  creative  elegance 
january 2017 by nhaliday
« earlier      
per page:    204080120160

Copy this bookmark:





to read