recentpopularlog in

robertogreco : viruses   5

Microscopic Colonialism - e-flux Architecture - e-flux
"For much of their history European cities have been unhealthy places. Until the end of the nineteenth century, they were traversed by waves of infection that would thrive in the close assemblage of people and livestock. Urban mortality rates were so great that sustained migration from the countryside was the only way cities could maintain their population levels stable.1

This may seem a distant past now that “health” is understood in opposition either to aging or to diseases, such as cancer, that are non-communicable. Yet, not only do infectious diseases remain a major cause of death outside Western countries, but scientists agree that the number of epidemic events around the world has actually been increasing. Zika and Ebola are only two prominent examples of “emerging infectious diseases” (EID), a definition that was put forward in the 1990s by American virologist Stephen S. Morse.2 It is also widely accepted within biomedical science that there is a strong nexus between EIDs and the material footprint of capitalist processes of extraction and accumulation: mining, logging, and intensive agriculture have the effect of fragmenting wild habitats, increasing the risk of human exposure to pathogens in the wildlife.3

In spite of such evidence, infectious diseases are conspicuously absent from the architectural discourse on urbanization. This arguably stems from a narrow understanding of the “urban,” which is still limited to the scale of the Western city. As Rem Koolhaas and others have argued, our focus on urban cores has made us blind to the human-driven changes that are taking place outside of them—whether in the countryside or in tropical rainforests.

Among the epidemics that are new to the twentieth century, HIV is by far the deadliest. Discovered in 1983, its cumulative death toll currently exceeds thirty million people and shows little sign of abating.4 The history of its appearance—when and how it first became a human virus—exposes the root of the contemporary entanglement between pathogens, humans, and the environment.

Modernity and Health

Contrary to non-communicable diseases, epidemics are a direct function of urbanization: viruses, bacteria, and parasites can propagate only where enough people live close to one another. If a person catches a virus but dies before having a chance to transmit it to someone else, no epidemic will take place. The size, density, and distribution of human settlements are thus crucial in determining how an epidemic spreads. This is why epidemics can only develop in settled societies—nomadic or seminomadic communities are generally too small and far apart for pathogens to spread effectively. Recent evidence indicates that it was only after the onset of agriculture and of animal husbandry—around 10,000 years ago—that epidemics became a regular presence in human history.5"
andreabagnato  2017  colonialism  civilization  cities  disease  remkoolhaas  ebola  hiv  zika  health  urban  urbanism  density  entanglement  pathogens  modernity  nomads  nomadism  epidemics  settlements  history  urbanization  viruses  bacteria  society 
december 2017 by robertogreco
Seeing Like a Network — The Message — Medium
"Practical privacy and security is just a part of digital literacy. Right now, for most people, learning how their computers work seems hard enough, learning how the network works seems impossible. But it’s not, it’s just learning a new perspective about the world we live in.

A lot of us are scared of computer threats, networks, and the internet, but we don’t have to be. The new tools we use every day should be scary exactly the same way being handed a free Ferrari is scary. Kind of intimidating, but mostly awesome. And you’ll have to learn a thing or two in order to not end up wrapped around a tree.

Digital literacy is getting a sense of your networks. It’s like learning a new city, invisible but beautiful, and baffling when you don’t know how a new city works. But then, as you roam around, it can start to make sense. You get more comfortable, and in time, your rhythms come together with its, and you can feel the city. You can cross the street safely and get what you need from the city. You can make friends there, and find safety, and love, and community. We all live in this common city now, and we just need to learn to see it.

We live in an age of networks, and it’s an amazing age."



"The internet and its constant signals are based on a simple way of passing around information. It’s called packet switching and it’s a lot like passing notes in 8th grade homeroom — it can take a while, and go through a lot of hands. From the moment you start your computer, it’s reporting in with all sorts of things on the net, but instead of one long note, computers pass out many tiny notes called packets. You don’t want to look at all those notes, either on the net or even the ones your own computer is sending and receiving anymore than you want to study whales by looking at their cells. (Which is to say sometimes you do, but you don’t really see the whole whale that way.)"



"The main tool computers have to communicate privately is cryptography. It’s taking things and scrambling them up (encrypting them) with a mathematical key, which only the computer on other side of the net which you’re sending the message to can decrypt.

It’s exactly like writing things in code, but codes you only share with the person or machine you want to be able to read them, or that you want to be able to read yours.

You use encryption all the time, you use it whenever the browser address is given in https instead of http. (We call this SSL, because computer scientists are terrible at naming things.) Just like 8th grade homeroom, on a network where everyone shares the same space, encryption is the only way to ever be private. (Encryption is largely based on something else you discovered in school: some math is really easy to do, but undoing it is really hard. Remember how you got the hang of your multiplication tables, but then along came division and factoring, and it was much harder and just sucked? Turns out computers feel exactly the same way.)

Every message you send out, whether it’s one you see or one you don’t, has your identity tied to it, and every one you get also tells the story of where it’s from and what it’s doing. That’s all before you get to the message you care about — that’s still all metadata. Inside of messages is media, the words and pictures we think of as our information.

What do passwords have to do with cryptography?

Nothing. In fact, if you go back to passing notes in class, passwords can get passed around in the clear text like anything else. Passwords authenticate you, they tell the computer that you are who you say you are, but they don’t encrypt or hide or secure you in any way. That’s why you need your passwords to be encrypted before they go online. Authentication is very important for getting things done on a network, since anyone can say they’re you, and because computers are fast, they can say it 6 million times in a row until they get believed. This is why we talk about multiple factors of authentication. A password is a thing you know, but when you turn on two factor authentication on Google, Facebook, Twitter, etc — which you should do — the other side of the network replies on both something you know and something you have, like your cellphone. That means in order to break your security and privacy, a thief would have to know your password and have your phone. This is a lot harder, and make the majority of attacks go away.

Why do we constantly tell people not to reuse passwords? Because you have to trust the people who save it on the other side of the network to not screw up, and the network not to expose the password in transit. That’s a lot of trust, and your casual gaming site isn’t going to work as hard to protect you as your bank is, so don’t use your bank password to save your Bejeweled scores."



"You are the immensely powerful Master of the genie in your life, your computer. You are a magic person to your computer, which we call the administrator, or sometimes superuser, or root, instead of Supreme Master of the Universe, as it should be. (Again, computer scientists missed the ball on naming things) You have the right to do anything you want on your computer, which is fantastic. You can take pictures and talk with people and record everything you do and tell the world everything you want. You can use it to paint and talk and record your innermost thoughts and even make another computer inside this computer, because you still have infinite wishes. This is one of the most powerful things humans ever created, and you’re currently surrounded by them, and the total master of yours.

But that means that anything that pretends to be you also has the right to do all those things. That’s where problems come in — where things come to your computer and pretend to be you. We have many names for these things, they are viruses, trojans, spyware, malware, etc. They can record everything you do, take pictures, tell the world, and even make another computer inside your computer — but only because you can do those things. They can only steal your power by imitating you."



"Your computer is a powerful genie of copying and calculating that you are the absolute master of, talking to a world full of other genies, connecting you to all the information and people in the world. Our networks are literally awesome — so huge and powerful and inspiring of awe that it’s a bit scary. It’s a cool time to be alive.

The End of the Beginning
The best part of learning to deal with all the scary threats scaring these days isn’t that you learn how to avoid threats, it’s that you learn how to use these amazing, outlandish super powers being part of networks gives you.

It’s the first days of the internet, but the truth is, that this is better for normal people than for the megapowerful. The network is ultimately not doing a favor for those in power, even if they think they’ve mastered it for now. It increases their power a bit, it increases the power of individuals immeasurably. We just have to learn to live in the age of networks."
quinnnorton  2014  networks  networkliteracy  literacies  multiliteracies  infrastrcture  internet  online  privacy  fear  security  learning  digital  copying  phishing  malware  viruses  trojans  passwords  cryptography 
august 2014 by robertogreco
isen.blog: Fixing the Internet might break it worse than it's broken now.
"So, we might ask, who wants the story of the dangerous Internet spread? Who wants the Internet to be seen as a dangerous place? Whose business models are becoming obsolete as the generic generative Internet grows and pervades? Who is threatened by the absence of gatekeepers? Then look who continues to pursue the story ..."
internet  web  security  viruses  worms  2009  privacy  fear  business  gatekeepers  via:preoccupations 
february 2009 by robertogreco
malwarez cyber threats - data visualization & visual design - information aesthetics
"series of visualization of worms, viruses, trojans and spyware code. for each piece of disassembled code, API calls, memory addresses and subroutines are tracked and analyzed. their frequency, density and grouping are mapped to the inputs of an algorithm
visualization  worms  viruses  spyware  code  visual  information  infographics 
january 2008 by robertogreco

Copy this bookmark:





to read